Simplificación de fracciones.

Simplificación de fracciones
Simplificar una fracción es convertirla en otra fracción equivalente cuyos términos sean menores.

Ejemplo 1: Simplificar 80/120

Se dividen los dos términos sucesivamente por sus factores comunes (Factorización de números).

80 y 120 se pueden dividir entre 2 = 40 y 60

40 y 60 se pueden dividir entre 2 = 20 y 30

20 y 30 se pueden dividir entre 2 = 10 y 15

10 y 15 no son divisibles ni entre 2, ni 3 ni 4. Por lo tanto los dividimos entre 5 = 2 y 3

2 y 3 son primos entre sí. Estos dos números son el numerador y el denominador de la fracción simplificada.

Por lo tanto la fracción 80/120 se puede simplicar a 2/3

simplificar

Como puedes ver este procedimiento de hacer divisiones puede ser tedioso cuando se trate de números más grande.

Para evitarlo, se puede reducir una fracción a su más simple expresión hallándose el m.c.d. de los dos términos de la fracción y dividiendo el numerador y el denominador por su m.c.d.

Ejemplo 1: Simplicar 80/120

Por medio de la Factorización de números se halla su m.c.d. que es 40

El numerador 80 se divide entre 40 = 2

El denominador 20 se divide entre 40 = 3

Con los dos cocientes ( 2 y 3 ) se forma la nueva fracción simplificada.

Por lo tanto la fracción 80/120 se puede simplicar a 2/3
1simplificar

Ejemplo 2: Simplicar 357/680

Como 357 y 680 son números grandes, no podemos asegurar a simple vista, si son primos entre sí.

Para averiguarlo hallamos el m.c.d. de 357 y 680.

Si son primos entre sí su m.c.d será 1, si no lo son, sus factores comunes aparecerán en el m.c.d.

Después de la Factorización de números  357 y 680 podemos ver que tienen como factor común al 17

Por lo tanto no son números primos entre sí; y para simplificar la fracción dividimos los dos términos entre 17

357 ÷ 17 = 21 y 680 ÷ 17 = 40

Por lo tanto la fracción 357/680 se puede simplificar a 21/40 que son números primos entre sí.

simplificar1

Reducción de fracciones al mínimo común denominador

Se simplifican las fracciones dadas, después se halla el m.c.m. de los denominadores y éste será el denominador común

Para hallar los numeradores, se divide el m.c.m. entre cada denominador y el cociente se multiplica por el numerador correspondiente.

Ejemplo 1: Simplicar 18/24 y 32/64

Simplificando fracciones nos quedan 3/4 y 1/2

Hallamos el m.c.m. de los denominadores 4 y 2

Como 4 es múltiplo de 2, entonces 4 es el m.c.m.

Para hallar los numeradores divido el m.c.m. 4 entre el denominador de la primera fracción (4 ÷ 4 = 1) y el cociente 1 se multiplica por el numerador de esa fracción (1 x 4 = 4) y éste es el primer numerador

Realizamos el mismo procedimiento con la segunda fracción (1/2), divido el m.cm. 4 ÷ 2 = 2 y´este cociente lo multiplico por el numerador 1 = 2

Las fracciones que me han quedado son 3/4 y 2/4
Este procedimiento es muy útil en la resolución de operaciones con fracciones.

reduce1

reduce2
reduce3

Ejemplo 1 Ejercicios resueltos

Ejemplo 2 Ejercicios resueltos

Ejemplo 3 Ejercicios resueltos

Ejemplo 4

Anuncios

7 thoughts on “Simplificación de fracciones.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s