Desafíos Cuarto grado

Desafíos Bloque 1

Los desafíos están incompletos para que tú termines los ejercicios y practiques.
Espero tus comentarios y tus sugerencias. Con ellos podré mejorar cada día.
Da clic en el desafío que te interese revisar.

Ah! Si te gusta el sitio y te es útil, recomiéndalo a tus amigos y haz clic en Me gusta. Se encuentra en la parte inferior.

  1. Los libreros.
  2. Suma de productos
  3. En proceso
  4. Décimos, centésimos y milésimos
  5. Expresiones con punto
  6. La fábrica de tapetes
  7. Fiesta y pizzas
  8. Y ahora ¡Cómo va?
  9. ¿Cuáles faltan?

Desafíos Bloque 2

25. ¿Cuál es la escala?

26. ¿Hace falta el cero?

27. Cero información

28. ¿Qué fracción es?

29. Partes de un todo

30. En busca del entero

31. El más rápido

32. Tarjetas decimales

33. Figuras para decorar

34. Como gran artista

35. Desarrolla tu creatividad

36. El transportador

37. Geoplano circular

38. El uso del transportador

39. Pequeños giros

40. Dale vueltas al reloj

41. Trazo de ángulos

42. Cuadros o triángulos

43. ¿Cuál es más útil?

Desafíos Bloque 3

44. Camino a la escuela

45. Los cheques del jefe
46. De diferentes maneras

47. Expresiones equivalentes

48. ¿Tienen el mismo valor?

49. Tiras de colores

50. La fiesta sorpresa

51. Sumas y restas I

52. Sumas y restas II

53. Los ramos de rosas

54. Cuadrículas grandes y pequeñas

55. Multiplicación con rectángulos

56. La multiplicación
57. Algo simple

58. Hagamos cuentas

59. De viaje

60. En la feria
61. Cuadriláteros

62. ¿En qué se parecen?

63. Los habitantes de México

64. Cuida tu alimentación

Desafíos Bloque 4

65. ¿Qué parte es?

66. ¿Qué fracción es?

67.¿Cuántos eran?

68. ¡Primero fíjate si va!

69. Estructuras de vidrio

70. De varias formas

71. Problemas olímpicos

72. Cambiemos decimales

73. Son equivalentes

74.La medida de sus lados

75. ¿Habrá otro?

76. Lo que hace falta

77. ¡Mucho ojo!

78. De práctica

79. ¿Cuántas veces cabe?

80. Contorno y superficie

81. Relación perímetro-área

82. Memorama

83. Las costuras de Paula

84. ¿Cuántos caben?

85. Superficies rectangulares

86. En busca de una fórmula

87. Medidas en el salón

88. ¿Cómo es?

Desafíos Bloque 5

89. ¿Por qué son iguales?

90. Sólo del mismo valor

91. El número mayor

92. ¿Cuánto más?

93. ¿Cuánto menos?

94. Dobles, triples, cuádruples

95. Sucesión con factor

Desafío 16. Sexto grado.

Distancias iguales

APRENDIZAJE ESPERADO: Describas diferentes rutas en un mapa para ir de un lugar a otro e identifiques aquellas en las que la distancia recorrida es la misma. Calcules distancias reales a través de la medición aproximada de un punto a otro en un mapa.
consigna
A continuación se presenta un mapa del centro de Puebla. En equipo describan tres rutas diferentes en las que se camine la misma distancia para ir del Zócalo al punto marcado con la letra A.
Como en el desafío anterior, también en éste hay múltiples respuestas. Te presento una posible solución en la cual, en las tres rutas se caminan 12 cuadras.
Ruta 1. Sal de la esquina norponiente del Zócalo hacia el Poniente, sobre Avenida Reforma y camina cuatro cuadras hasta llegar a la calle 9 Sur, da vuelta a la derecha y camina hacia el Norte ocho cuadras para llegar a la calle 16 Poniente. Has llegado al punto A. En total recorres 12 cuadras.
16_1.1
Ruta 2. Sal de la esquina surponiente del Zócalo, del lado de la Catedral y camina sobre la calle 3 poniente 3 calles. Llegando a la calle 7 Sur da vuelta a la derecha y camina hacia el norte 9 cuadras hasta llegar a la calle 16 Poniente. Has llegado al punto A. En total recorres 12 cuadras.
16_1.2
Ruta 3. Sal del lado nororiente del Zócalo en el cruce la Avenida J. Palafox y Mendoza y calle 2 Sur. Camina 8 cuadras al Norte sobre sobre la calle 2 Sur. Legando a la calle 16 Oriente, da vuelta a la izquierda y camina cuatro cuadras para llegar al punto A. En total recorres 12 cuadras
16_1.3

Desafío 16. Quinto grado.

Línea del tiempo

APRENDIZAJE ESPERADO: Identifiques la relación entre la representación con números romanos de los siglos y la representación decimal de los años que abarcan. Analices las relaciones entre las unidades de tiempo
Iniciemos por recordar cómo se manejan los datos en el tiempo.
En este caso vamos a trabajar con años y con siglos.
Tienen que cumplirse 100 para formar un siglo.
Del año 1 al año 100 se forma el siglo I
Los años se representan con números decimales y los siglos con números romanos.
En el desafío 14 vimos cómo se forman los siglos. En este desafío vas a reforzar este aprendizaje y lo vas a utilizar en la línea del tiempo.
16_1.1
Ahora veamos cómo interpretar la línea del tiempo.
La línea tiene su origen en el número cero, a partir de él se extiende hacia la derecha y hacia la izquierda.
Los números del cero hacia la derecha, representan el tiempo (años o siglos) de nuestra era (d.n.e).
Los números del cero a la izquierda, representan el tiempo (años o siglos) antes de nuestra era (a.n.e.). En la línea del tiempo se les pone un signo negativo (-) antes del número. Ejemplo: -100
16_1.2
Ahora vamos a ubicar años y siglos en la línea del tiempo.
16_1.3
16_1.4
16_1.5
16_1.6
Empecemos con el desafío.
consigna
De manera individual, ubica en la línea del tiempo en qué momento de la historia se desarrollan los acontecimientos que se enuncian en cada recuadro y coloca la letra que corresponda a cada círculo. Luego, organizados en equipos, discutan y contesten las preguntas.
16_1.7
Son tres los pasos que vamos a seguir:
1. Ubicar la fecha en el recuadro
2. Determinar el lado en el que se va a ubicar: a la derecha del 0 si la fecha es d.n.e. y a la izquierda del cero si es a.n.e.
3. Localizar la fecha en la línea del tiempo.
Resolvamos:
Caso A
1. La fecha es Siglo IV a.n.e (siglo 4)
2. Se ubicará a la izquierda del cero porque es a.n.e.
3. Ubicación en la recta:
16_1.8
Caso B
1. La fecha es Siglo XXVII a.n.e (siglo 27)
2. Se ubicará a la izquierda del cero porque es a.n.e.
3. Ubicación en la recta:
16_1.9
Caso C
1. La fecha es año 630 d.n.e
2. Se ubicará a la derecha del cero porque es d.n.e.
3. Ubicación en la recta:
16_2.1
Caso D
1. La fecha es XVI a.n.e
2. Se ubicará a la izquierda del cero porque es a.n.e.
3. Ubicación en la recta:
16_2.2
Caso E
1. La fecha es año 1521 d.n.e
2. Se ubicará a la derecha del cero porque es d.n.e.
3. Ubicación en la recta:
16_2.3
Practica lo aprendido y resuelve los tres ejercicios que faltan.

Caso F
1. La fecha es año 1917 d.n.e
2. Se ubicará a la derecha del cero porque es d.n.e.
Caso G
1. La fecha es año 30 a.n.e
2. Se ubicará a la izquierda del cero porque es a.n.e.
Caso H
1. La fecha es año 624 a.n.e
2. Se ubicará a la izquierda del cero porque es d.n.e.
16_2.4

a) ¿Cuántas décadas han transcurrido desde el acontecimiento señalado en el recuadro F hasta la fecha actual?

2015 – 1917 = 98 Han transcurrido 9 décadas 8 años.

b) ¿Cuántos años faltan por transcurrir para completar un siglo en el caso anterior?

Para un siglo necesito 100. Si ya pasaron 98 años, faltan 2 años.

c) ¿Cuántos siglos han transcurrido desde el hecho histórico descrito en el recuadro A hasta el año actual?

Hasta 2015 han transcurrido 20 siglos (más 15 años del siglo XXI) más los 4  a.n.e. del hecho histórico A, son 24 siglos

d) ¿En qué siglo nació Tales de Mileto?

Nación en 624 a.n.e. De -700 años hasta -601 años es el Siglo VII a.n.e.

e) Según la línea del tiempo, ¿en qué siglo los españoles conquistaron la ciudad de Tenochtitlan?

Siglo XVI d.n.e. (de 1501 al 1600 abarca este siglo).

f) De acuerdo con la línea del tiempo, mencionen un hecho histórico ocurrido durante el Siglo XX

La Revolución Rusa de 1917 (Siglo XX abarca de 1900 a 1999).

Contesta las preguntas faltantes.

Te puedes apoyar en la siguiente tabla para ubicar las fechas que se piden.

16_1111

Desafío 15. Sexto grado.

En busca de rutas

APRENDIZAJE ESPERADO: Describas diferentes rutas en un mapa para ir de un lugar a otro. Calcules distancias reales a través de la medición aproximada de un punto a otro en un mapa.
consigna
En el mapa del centro de Guanajuato, en parejas elijan sólo uno de estos lugares: Teatro Principal, Teatro Juárez, Universidad de Guanajuato, Basílica de Guanajuato; después establezcan, sin decirle a nadie, la ruta para ir de la Alhóndiga al lugar elegido.
Den por escrito sus indicaciones a otra pareja para que descubra el sitio elegido por ustedes, siguiendo la ruta indicada. Si no logran llegar, analicen si hubo un error en la descripción o en su interpretación.
Para este desafío hay varias respuestas según el sitio que elija cada pareja. Sin embargo, para sus descripciones todos deben considerar los puntos cardinales, los nombres de las avenidas o calles por las que van a pasar y los lugares que hay en su camino.
Una solución posible es la siguiente:
Indicaciones de la ruta a seguir:
De la Alhóndiga toma la calle Mendizábal hacia el sur para llegar a la Avenida Juárez, y camina hacia el este hasta llegar al Jardín Reforma, sube hasta llegar al Templo de San Roque. Continúa por la Avenida Juárez hasta la calle del Palacio Legislativo. Del lado este del Palacio legislativo, está el lugar que escogí.
15_1.1

Desafío 15. Quinto grado.

¿Mañana o noche?

APRENDIZAJE ESPERADO: Conozcas y comprendas diferentes unidades y periodos para medir el tiempo.

Unidades de tiempo.
El sistema de medidas de tiempo no es decimal y tienen unidades principales: el día y el año.
El día es el tiempo empleado por la tierra en dar una vuelta completa alrededor de su eje.
A partir del día hay horas, minutos y segundos.
1 día tiene 24 horas, 1 hora tiene 60 minutos y un minuto tiene 60 segundos.
Hay varias formas de expresar la hora.
Una de ellas es utilizando las letras A.M. y P.M.
Cuando se trata de las horas de las 12 de la noche hasta las 11.59 de la mañana, se pone A.M. que significa antes de mediodía.
Cuando se trata de las horas de las 12 del día hasta las 11.59 de la noche, se pone P.M. que significa Pasado de mediodía.
Otra es manejando las horas del día de corrido, es decir utilizando del 1 al 24 y estos números corresponden a las horas transcurridas a después de las 12 de la noche. Del 1 al 11 son las horas de la mañana y de 13 a 24 son las horas de la tarde y noche.
consigna1
En equipos resuelvan el siguiente problema.
Meche le dijo a Alejandro que llegara el viernes a su casa, 15 minutos antes de la hora del noticiero, para hacer la tarea de ecología y le dejó el siguiente recado:
15_1.2
Con base en la información del recado, contesten:
a) ¿Meche y Alejandro se verán en la mañana o en la noche?

Si son las 21:15 horas, el horario corresponde a la noche.
 b) ¿A qué hora comienza el noticiero?
El recado dice que se verán a las 21:15hr y Meche pidió que llegara 15 minutos antes del noticiero. Tenemos que sumar 21:15 más 15. La operación se resuelve separando horas de minutos.
15_1.3
El noticiero comienza a las 21:30 hrs
Escribe todas las formas diferentes para representar la hora a la que empieza el noticiero.
15_1.4
consigna2
Continúen trabajando con sus compañeros de equipo y resuelvan el siguiente problema.
En la secundaria donde estudian Meche y Alejandro, el horario de clases empieza a las 7:30 a.m. y termina a las 2:20 p.m. Las sesiones duran 50 min. con un descanso de 10 min entre cada clase.
a) ¿A qué hora termina la segunda clase?
Analicemos los datos: Inician a las 7:30 a.m., duran 50 min y hay un descanso de 10 min entre cada clase.
Para saber la duración de una clase y el descanso que hay en cada una, tenemos que sumar los tiempos anteriores:
15_1.5
Observa que la cantidad de minutos es igual a los que tiene una hora.
Sabemos que cada clase con su descanso transcurre en una hora.
Si empiezan a las 7:30 a.m. la segunda clase inicia a las 8:30 a.m.
Y hay que sumarle los 50 minutos que dura:
15_1.6
Observa que los minutos son más de 60, que son los que tiene una hora. Hay que cambiarlos a horas con una división:
15_1.7
La segunda hora termina a las 9:20 a.m.
b) ¿A qué hora inicia la penúltima clase?
Primero hay que saber cuántas clases se dan al día.
Sabemos que empiezan a las 7:30 a.m. y terminan a las 2:20 p.m.
Por lo que podemos determinar que son 7 clases. Veamos a qué hora es la penúltima. Hay que considerar que la última clase sólo dura 50 minutos, ya que ya no hay descanso, pues salen de clases.
15_1.8
La penúltima clase inicia a las 12:30 p.m.

No todos los profesores de la secundaria donde estudian Meche y Alejandro llegan y se van a la misma hora. Con base en los datos de la tabla, contesten lo siguiente.
15_1.9
a) Si el profesor Víctor asiste todos los días a la escuela con el mismo horario de trabajo, ¿cuánto tiempo permanece en la escuela durante la semana?
La información que tenemos es que el profesor Víctor permanece de 7:30 a 11:20 a.m.
Hay que saber cuánto tiempo permanece al día.
15_2.1
Según la tabla, permanece 4 horas menos 10 min de descanso que ya no permanece en la escuela (se va a las 11:20). El tiempo que permanece por día es:
15_2.2
Como no tengo minutos en el minuendo (4 horas 0 minutos), de las 4 horas tomo una y la convierto a minutos (recuerda que 1 hora es igual a 60 minutos) para realizar la resta. Me quedan 3 horas 60 minutos.
15_2.3
El profesor Víctor permanece en la escuela 3 horas 50 minutos diariamente y asiste los 5 días de la semana. Ahora hay que multiplicar estos datos para saber cuánto tiempo permanece durante la semana. Los datos se multiplican por separado.
15_2.4
En este dato que hemos obtenido, es necesario cambiar los minutos a horas. Lo hacemos con una división y sumamos las horas del resultado a las que obtuvimos anteriormente. Los minutos serán el residuo de la división.
15_2.5
Puedes sumar las 3 horas 50 minutos cinco veces, que serían los cinco días de la semana, llegarás al mismo resultado
15_2.6
Otra forma es multiplicar las 4 horas completas por día y restar los 50 minutos que se juntan de los 5 descansos de 10 minutos que ya no se queda en la escuela.
15_2.7
El profesor Víctor permanece en la escuela durante la semana 19 horas 10 minutos.
b). El profesor José Luis tiene libres los miércoles; los demás días llega a la escuela una hora antes para preparar sus materiales de Biología. ¿Cuánto tiempo permanece diariamente en la escuela?
Veamos los datos de la tabla para saber cuánto tiempo permanece diariamente:
15_2.8
Si contamos de 8:30 a 11:30 son 3 horas. Le quitamos los diez minutos del descanso que no se queda porque se va a las 11:20 no a las 11:30
El profesor José Luis permanece por día 2 horas 50 minutos.

Si por día llega una hora antes  para prepara sus materiales, hay que aumentar 1 hora.

El profesor José Luis permanece diariamente en la escuela 3 horas 50 minutos.
c). El tiempo de permanencia del profesor Santos es de 8 horas 20 minutos a la semana, incluidos los descansos. La tabla anterior sólo muestra su horario de trabajo para los días martes y jueves. Si su horario de entrada no cambia, ¿qué tiempo cubre los demás días?
Analicemos los datos:
En total cubre 8 horas 20 minutos a la semana
Martes y jueves cubre:
15_2.9
En total, martes y jueves cubre 5 horas 40 minutos.
Para saber cuánto tiempo permanece los demás días, al tiempo total que permanece en la semana ( 8 horas 20 minutos), le voy a quitar el tiempo que permanece el martes y el jueves (5 horas 40 minutos):
15_3.1
Observa que en el minuendo tengo menos minutos que en el sustraendo, por lo que no puedo restarlos. Tengo que tomar una hora de las 8 (me quedarían 7 horas) para cambiarla a minutos (60) y éstos sumarlos a los 20 que ya tengo me dan 80 minutos para poder realizar la resta:
15_3.2
El profesor Santos cubre 2 horas 40 minutos los demás días.
consigna4
El 3 de junio a las 10 horas un barco parte de la ciudad de Veracruz para hacer un crucero; el regreso está previsto para el día 18 de junio a las 17 horas. Calcula en días, horas y minutos la duración del crucero.
Con los datos que tengo puedo hacer lo siguiente:
Contar por separado cuántos días y cuántas horas pasarán hasta el regreso o puedo restar:
15_3.3
El crucero tardará 15 días 7 horas

Desafío 4. Cuarto grado.

Décimos, centésimos y milésimos

 APRENDIZAJE ESPERADO: Determines fracciones decimales y establezcan comparaciones entre ellas, a partir de la división sucesiva en 10 partes de una unidad.

Veamos las siguientes imágenes.
Tengo una unidad que mide un 1 m dividida en 10 partes iguales

4_2.6 Tomo una de ellas, tengo un décimo.4_1.1
El décimo se representa así:
4_1.2
Si tomo un décimo y lo divido en 10 partes iguales cada una de esas partes se llama centésimo, porque la unidad tiene cien partes de este tamaño; me queda así:
4_1.3
El tamaño del centésimo es éste:
4_1.4
Y se representa así:
4_1.5
Si el centésimo es dividido en 10 partes iguales, cada parte recibe el nombre de milésimo, porque mil partes iguales equivalen a la unidad. La representación es así:
4_1.6
Y si tomo una de esas diez partes, se representa así:
4_1.7
De manera general, queda así:
4_1.8
consigna1
En parejas recorten tiras de 3 cm de ancho utilizando cartoncillo de diferente color con las siguientes características:
• Tira de 1 m de largo, será la unidad
• Tira de 1m de largo dividida en 10 partes iguales. Cada parte es un décimo de la unidad.
• Tira de 1dm de largo dividida en 10 partes iguales. Cada parte es un centésimo de la unidad.
• Tira de 1cm de largo dividida en 10 partes iguales. Cada parte es un milésimo de la unidad.
4_1.9
consigna2
Tengan a la mano su material recortado para contestar las siguientes preguntas.
a) ¿Cuántos décimos caben en una unidad? ¿Cuántos centésimos en un décimo?, y ¿cuántos milésimos caben en un centésimo?
Recuerda en cuántas partes estuviste dividiendo cada una de las que obtuviste. Primero la unidad la dividiste en diez partes y las llamaste décimos, después un décimo lo dividiste en diez partes y cada una la llamaste centésimo. Por último un centésimo lo dividiste en diez partes y a cada una la llamaste milésimo.
4_2.1
b) ¿Qué es más grande, un décimo o un centésimo?
4_2.2
c) ¿Cuántos milésimos caben en un décimo?
4_2.3
d) ¿Cuántos milésimos caben en una unidad?
Recuerda que la unidad se forma con 10 décimos.
4_2.4
e) En dos décimos, ¿cuántos centésimos hay?
4_2.5
f) ¿Cuántos décimos hay en media unidad?

Ésta es una unidad
4_2.6
g) ¿Cuántos décimos hay en una unidad + 5/10?
A la unidad, súmale los 5/10
h) ¿Cuántos milésimos tienen 1.5 unidades?
Sabes que un décimo tiene 100 milésimos, ¿cuántos décimos hay en una unidad? ¿Y en 1.5 unidades?
4_2.7

Desafío 2. Cuarto grado

Suma de productos

APRENDIZAJE ESPERADO: Uses la descomposición aditiva y multiplicativa de los números al resolver problemas
consigna
En equipos resuelvan lo que se solicita.
• Lean con atención y resuelvan el problema 1

Analicemos los datos del problema.

Son 4 cajas con 1200 tornillos. Como es una suma de sumandos iguales con la que puedo obtener el resultado de los tornillos chicos: 1200 + 1200 + 1200 + 1200, puedo utilizar una multiplicación: 1200 x 4 y el resultado no se altera.

Lo mismo pasa con los demás datos.
2_1.1  2_1.9

En los recuadros de la siguiente página busquen la operación para resolver el problema 1 y obtengan el resultado.

De las opciones que da el libro, hay que escoger la que resuelve el problema anterior.
2_1.2

• Verifiquen que el resultado del problema y de la operación elegida sean iguales.

Ahora comparemos los dos procedimientos y veamos si se llega al mismo resultado.
2_1.3Resuelvan los demás problemas.

Vamos a analizar los datos del problema dos. Se encuentran encerrados en rectángulos de colores.

Como son cantidades que se repiten (8 veces 4000), podemos multiplicar (400 x 8). Realizamos las operaciones correspondientes con cada dato para obtener el resultado.
2_1.4
Buscamos la operación con la que se resuelve el problema entre las opciones que da el libro.

2_1.5
Y comparamos los resultados de los dos procedimientos para ver si son iguales.
2_1.6
El problema 3 se resuelve con las multiplicaciones 800 x 6 + 400 x 4 +  210 x 1.

Sigue el procedimiento para resolver los problemas que faltan.
2_1.7
2_1.8

Desafío 14. Sexto grado.

Batalla naval

APRENDIZAJE ESPERADO: Utilices un sistema de referencia para ubicar puntos en una cuadrícula y practiques la elaboración de un código para comunicar la ubicación de objetos en una cuadrícula. Establezcas códigos comunes para ubicar objetos.
consigna1
Para llevar a cabo esta actividad primero identifica tu material y los elementos que hay en él.

Tu plano es una cuadrícula que tiene del lado izquierdo letras mayúsculas, todos los cuadros que pertenecen a cada letra forman una fila (de izquierda a derecha) y se nombran con las letras.
14_1.1
En la parte superior hay números, todos los cuadros que están abajo de cada uno de ellos forman una columna. Se nombran con el número.
14_1.2
Para ubicar un cuadro tienes que escoger primero la columna, es decir el número y después deslizarte hacia debajo de ese número hasta el cuadro que desees y ubicar  la fila. Para ubicar correctamente el cuadro, tienes que ver a qué fila pertenecen (qué letra) y para dar la ubicación correcta del cuadro, primero mencionas la columna (el número) y después la fila (la letra). Así se forma la coordenada de ubicación. Los datos de la coordenada se separan con una coma. Ejemplo: Las coordenadas en las que se ubican los cuadros cafés son: “1,B” “2,B” “3,B” y “4,B”.
14_1.3
Ahora que te sabes ubicar, coloca tus fichas y anota las coordenadas de cada una de ellas, es decir la ubicación considerando la pareja de un número y una letra.
Realiza el juego.
consigna2
Diego ya había hundido dos barcos a Luis: el portaaviones y un acorazado. Observen el tablero de Luis donde aparecen las naves hundidas, pero no las que siguen a flote.
14_1.4
En su turno Diego le dice “8,F” y Luis contesta “tocado”. Indiquen de cuántas casillas puede ser el barco.
Sabemos que Luis tiene las siguientes naves:
14_1.5
• De estas naves ya le hundieron las de la imagen:
14_1.6
• Que corresponden al portaaviones y a un acorazado.
• Por lo tanto a Luis le quedan:
14_1.7
• Que son un acorazado, tres destructores y cuatro submarinos.
• Si Luis dijo “tocado” cuando le dieron la coordenada “8,F”, sabemos que no son sus submarinos porque los hubiera hundido ya que sólo ocupan una coordenada cada uno (sólo se forman con un cuadrito). Ahora sabemos que sólo pueden ser un acorazado o un destructor. Ya tienes la respuesta. Indiquen de cuántas casillas puede ser el barco.

14_1.8

Observa las posibilidades de ubicar una nave partiendo de la coordenada dada “8,F” sabiendo que su nave puede tener dos o tres cuadritos (porque sólo tiene un acorazado y tres destructores), y recordando que todo barco debe estar rodeado de agua o tocar un borde del tablero.
14_1.9
Señalen en el tablero todos los lugares donde podría estar el barco y luego escriban las posiciones (número y letra) que debe nombrar Diego para intentar hundirlo.
Observa la imagen. No está “6,F” porque ya no estaría rodeado de agua. Escribe las coordenadas de cada uno de los cuadros que se colocaron en rojo, menos la “8,F” (deben ser cuatro coordenadas).  Ésta es la respuesta.
14_2.1
• En la próxima jugada Diego dice: “7,F” y Luis responde “tocado”. Escriban la posición (número y letra) que permite localizar exactamente el barco.
14_2.2
• Como puedes ver, ya tiene dos cuadritos “tocados” y no lo han hundido, por lo que descartamos a los destructores que son de dos cuadritos y sabemos que se trata del acorazado (de tres cuadritos). También sabemos que está sobre la fila “F” ya que las dos coordenadas tiene esta letra: “8,F” y “7,F”.
14_2.3
• Localiza la tercera coordenada y es la posición que permite localizar exactamente al barco.
14_2.4

Desafío 14. Quinto grado.

Unidades y períodos

Unidades y períodos
APRENDIZAJE ESPERADO: Conozcas y comprendas diferentes unidades y periodos para medir el tiempo.
El año es el tiempo empleado por la Tierra en recorrer su órbita, es decir, en dar una vuelta completa alrededor del Sol.
Según cálculos astronómicos, un año civil o común tiene 365 días 5 horas 48 minutos 46 segundos.
Un año civil tiene 365 días y, como se ve, no considera las 5 horas 48 minutos 46 segundos, por ello cada cuatro años se tiene un año de 366 días, que se llama año bisiesto (2016 será año bisiesto).
Considerando el año civil o común se forman las siguientes unidades:
14_1.1
consigna
En parejas, analicen la información de cada una de las siguientes situaciones. Posteriormente, respondan lo que se indica.
En cada imagen se enmarcarán las unidades de tiempo que se emplean para que contestes las preguntas que se te presentan.
14_1.2
a) De acuerdo con lo anterior, si los dinosaurios aparecieron sobre la tierra hace aproximadamente 205 Ma, ¿a qué era corresponden?
¿Dónde ubicas 205 Millones de años?  205 se encuentra   en la era que comprende de 251 Ma a 65.5 Ma. ¿Qué era es?
14_1.3
b) ¿Qué unidad de tiempo se utiliza en los eones y en las eras geológicas?
Observa la imagen de arriba de la situación 1 y responde.
14_1.4
a) Si un milenio equivale a 1000 años, ¿hace cuántos milenios fue descubierto el territorio mexicano?
Para obtener la respuesta, busca en la situación 2  (arriba) hace cuánto que fue descubierto el territorio mexicano (30,000 años)  y realiza operación correspondiente para convertir los años a milenios (30,000 ÷ 1000).
14_1.5
a) ¿De qué año a qué año comprende el Siglo XIX?
Guíate en la siguiente imagen para contestar. Generalmente hay confusiones por no considerar que el primer siglo se cumple desde el primer año hasta el año 100. Observa la relación que hay del primer año al último año de cada siglo. Te lo marco con círculos rojos. Compara estos números y fíjate en la imagen: Si es el Siglo XII (doce), empieza en 1101 o en 1201? Si estás hablando del Siglo XIX (diecinueve) empieza en 1801 o en 1901?

14_1.6
 b) ¿Cuántos años duró la Revolución Mexicana?
Realiza la operación correspondiente para obtener la respuesta. Inicia en 1910   y termina en 1920.

¿Cuántos años hay entre estas dos fechas?
c) ¿A cuántos años equivale un decenio?
Con los datos de la pregunta anterior puedes obtener la respuesta
14_1.7
a) Si un centenario equivale a 100 años, ¿hace cuántos centenarios fue construido el inmueble?
Primero obtén los años que lleva construido el inmueble. Para ello considera el año en el que se construyó y el año actual. Posteriormente, convierte esos años a centenarios con la operación correspondiente.
14_1.8
b) ¿Durante cuántas décadas ha tenido vigencia la Constitución de 1917?
Obtén los años desde que se promulgó hasta la fecha. Para ello considera el año en el que se promulgó y el año actual.
14_1.9
Ahora convierte con la operación correspondiente, esos años a décadas.
c) Si un quinquenio o lustro equivale a 5 años, ¿desde hace cuántos lustros la casa se instauró como museo?
Obtén los años desde que se instauró como Museo hasta la fecha. Para ello considera el año en el que se instauró y el año actual.
14_2.1
Ahora convierte con la operación correspondiente, esos años a quinquenios (entre 5).
14_2.2
a) ¿Cuántos años vivió el cura Hidalgo?
14_2.3
b) ¿Qué unidad de tiempo se utiliza para referirse a la edad de las personas?

Desafío 13. Sexto grado.

¿Por dónde empiezo?

APRENDIZAJE ESPERADO: Reflexiones sobre la necesidad de un sistema de referencia para ubicar puntos y el establecimiento de códigos comunes para ubicar objetos.
consigna
En parejas resuelvan el siguiente problema.
Daniel invitó a sus primos Isaac, Luis, Rocío y Patricia a una obra de teatro. Los boletos que compró no están juntos pero todos corresponden a la sección Balcón C del teatro. El siguiente plano representa las diferentes secciones de asientos.

 a) ¿Cómo describiría Daniel a sus primos en qué parte del teatro están sus lugares, si ellos no tienen el plano a la vista?

13_1.1
Para ubicarlos cada quien puede hacer su referencia, lo importante es que consideres un punto de partida para la ubicación: puede ser el escenario y de allí contar las secciones hacia atrás hasta la de ellos. También puedes indicar que del escenario hacia atrás, las secciones se nombran por letras del abecedario y decirles cuál letra es la de su sección. Otra opción es que inicies del final del teatro hacia el escenario y determines cuántas secciones son desde la última hasta la sección de ellos, etc. Puedes agregar cuántas secciones hay antes y después de la de ellos y apoyarte en los pasillos. O puedes indicar las secciones que hay por el color que tienen los asientos e indicarles cuál es el de su sección. . O puedes hacerlo por filas, aunque sería muy tardado.
b) El siguiente plano corresponde a la zona de la sección Balcón C en la cuál se ubican los lugares de Daniel, Isaac, Luis, Rocío y Patricia. Márquenlos con una x según la siguiente información:
• El lugar de Daniel está en la segunda fila, décima columna.
• El lugar de Isaac está en la sexta fila, quinta columna.
• El lugar de Luis está en la quinta fila, octava columna.
• El lugar de Rocío está en la tercera fila, décima segunda columna.
• El lugar de Patricia está en la sexta fila, décima primera columna.
Los lugares se ubican tomando como referencia el escenario.
Viéndolos de frente, la sección tiene 8 filas y 14 columnas.
La numeración de los asientos de cada fila inicia de izquierda a derecha.
13_1.2
Ahora ubica los lugares de cada una de las personas.